Shape-constrained splines

Applications and examples in R

Antonio Gasparrini and Zaid Chalabi

Department of Social and Environmental Health Research
London School of Hygiene and Tropical Medicine (LSHTM)

Centre for Statistical Methodology – LSHTM
30 October 2015
Outline

1. Splines in regression models
2. Defining constraints to the shape
3. Shape constrained additive models
4. Some examples in R
5. Extensions and discussion
Outline

1. Splines in regression models
2. Defining constraints to the shape
3. Shape constrained additive models
4. Some examples in R
5. Extensions and discussion
Scatterplot of x and y
True relationship

![Graph of the true relationship between x and y. The graph shows a smooth curve fitting the data points, indicating a non-linear relationship.](image-url)
B-spline regression

The relationship between the predictor x_i and the response y_i, with $i = 1, \ldots, n$, can be defined by a function f:

$$ y_i = f(x_i) $$

The function can be approximated by $m = p + r$ B-splines of degree r, by setting $p + 1$ knots in the range $x_1 \leq x \leq x_n$:

$$ y_i = f(x_i) \approx \sum_{k=1}^{m} \gamma_k b_{k,r}(x_i) $$

where $b_{k,r}$ is the (non-negative) k^{th} B-spline and γ_k its coefficient.
Spline basis terms
Estimation

By defining:

$$
\gamma = [\gamma_1, \ldots, \gamma_k, \ldots, \gamma_m]^T
$$

$$
x_i = [b_1, r(x_i), \ldots, b_k, r(x_i), \ldots, b_m, r(x_i)]^T
$$

it is possible to rely on **standard estimation methods** by minimizing the least square objective:

$$
\sum_{i=1}^{n} (y_i - f(x_i; \gamma))^2 = ||y - X\gamma||^2
$$
Splines and coefficients

![Graph showing splines and coefficients.]

<table>
<thead>
<tr>
<th>$b_k(x)$</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>71.48</td>
<td>0</td>
</tr>
<tr>
<td>11.89</td>
<td>2</td>
</tr>
<tr>
<td>4.65</td>
<td>4</td>
</tr>
<tr>
<td>23.55</td>
<td>6</td>
</tr>
<tr>
<td>56.55</td>
<td>8</td>
</tr>
<tr>
<td>25.36</td>
<td>10</td>
</tr>
</tbody>
</table>

$Gasparrini & Chalabi$
Fitted curve
Comparison

Shape-constrained splines

Gasparrini & Chalabi LSHTM
Issues and motivation

Two issues:

1. 'Wiggly' shape: need to define optimal smoothness of the curve [NB: discussed in a previous CSM seminar]

2. Possibility of imposing shape-constraints on the curve [NB: today's topic]

The latter can be based on a priori assumptions: in many biological or epidemiological phenomena, we can assume for instance monotonic increasing/decreasing and/or convex/concave associations
Outline

1. Splines in regression models
2. Defining constraints to the shape
3. Shape constrained additive models
4. Some examples in R
5. Extensions and discussion
Derivatives of a spline function

For a B-spline function:

\[f(x; \gamma) = \sum_{k=1}^{m} \gamma_k b_{k,r}(x) \]

assuming equi-spaced knots at distance \(z \), the derivatives can be computed as:

\[f'(x; \gamma) = z^{-1} \sum_{k=2}^{m} (\gamma_k - \gamma_{k-1}) b_{k,r-1}(x) \]

\[f''(x; \gamma) = z^{-2} \sum_{k=3}^{m} (\gamma_k - 2\gamma_{k-1} + \gamma_{k-2}) b_{k,r-2}(x) \]
Imposing constraints

Constraints on the first derivative
A sufficient condition for \(f'(x; \gamma) > 0 \) is \(\gamma_k - \gamma_{k-1} > 0 \) for \(k = 2, \ldots, m \)

Constraints on the second derivative
A sufficient condition for \(f''(x; \gamma) > 0 \) is \(\gamma_k - 2\gamma_{k-1} + \gamma_{k-2} > 0 \) for \(k = 3, \ldots, m \)

Constraints on linear combinations of the coefficients map into constraints on the shape of the relationship
In matrix terms

Defining the two difference matrices:

\[
D_1 = \begin{pmatrix}
-1 & 1 & 0 & \cdots & 0 & 0 \\
0 & -1 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -1 & 1 \\
\end{pmatrix}, \quad D_2 = \begin{pmatrix}
1 & -2 & 1 & \cdots & 0 & 0 \\
0 & 1 & -2 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -2 & 1 \\
\end{pmatrix}.
\]

Then:

\[f'(x; \gamma) > 0 \Rightarrow D_1 \gamma > 0\]
\[f''(x; \gamma) > 0 \Rightarrow D_2 \gamma > 0\]
Type of constraints

- Monotonically increasing: \(f'(x_i; \gamma) > 0 \) \(\Rightarrow \) \(D_1 \gamma > 0 \)
- Monotonically decreasing: \(f'(x_i; \gamma) < 0 \) \(\Rightarrow \) \(-D_1 \gamma > 0 \)
- Convex: \(f''(x_i; \gamma) > 0 \) \(\Rightarrow \) \(D_2 \gamma > 0 \)
- Concave: \(f''(x_i; \gamma) < 0 \) \(\Rightarrow \) \(-D_2 \gamma > 0 \)
- Monotonically increasing and convex: \(f'(x_i; \gamma) > 0 \) and \(f''(x_i; \gamma) > 0 \) \(\Rightarrow \) \([D_1^T D_2^T]^T \gamma > 0 \)

Estimation can be performed through **linear constrained optimization** using the log-likelihood function.
Outline

1. Splines in regression models
2. Defining constraints to the shape
3. Shape constrained additive models
4. Some examples in R
5. Extensions and discussion
An extension by Pya and Wood

Pya and Wood (2010, 2015) proposed shape constrained additive models. This approach simultaneously addresses two issues:

1. imposing constraints on the shape through a re-parameterization of the model
2. defining the optimal smoothness of the curve via additive models with penalized splines
Re-parameterization as an unconstrained model

In the case of monotonically increasing shapes, the constraints are enforced by setting $\gamma_k - \gamma_{k-1} > 0$ for $k = 2, \ldots, m$

This can also be obtained by re-parameterizing the B-splines with unconstrained coefficients ϕ as:

$$\gamma_1 = \phi_1, \quad \gamma_k = \phi_1 + \sum_{j=2}^{k} e^{\phi_j}, \quad k = 2, \ldots, m$$
Matrix formulation

Setting $\gamma = P\tilde{\phi}$, with $\tilde{\phi} = [\phi_1, e^{\phi_2}, \ldots, e^{\phi_m}]^T$, and:

$$P = \begin{pmatrix}
1 & 0 & 0 & \cdots & 0 \\
1 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \cdots & 1
\end{pmatrix}$$

the regression model can written in terms of unconstrained *working* parameters as:

$$f(x; \phi) = X P \tilde{\phi}$$

Fitted through non-linear unconstrained optimization
Shape constrained penalized splines

The optimal smoothness of the relationship can be found by penalizing differences between adjacent coefficients (Wood 2006).

The least square objective can be modified to:

$$||y - XP\tilde{\phi}||^2 + \lambda \phi^T S \phi$$

where $S = D_2^T D_2$ is a known penalty matrix (with D_2 previously defined), and λ is a smoothing parameter.
Maximizing the log-likelihood

\[L_p(\phi, \lambda) = L(\phi) - \frac{1}{2} \lambda \phi^T S \phi \]

\[J(\phi) = \frac{\partial L_p}{\partial \phi} \]

\[H(\phi) = \frac{\partial^2 L_p}{\partial \phi^2} \]

Starting from an initial estimate \(\phi^{(0)} \), solve iteratively using the Newton-Raphson method, with:

\[\phi^{(i+1)} = \phi^{(i)} - H(\phi^{(i)})^{-1} J(\phi^{(i)}) \]

This method is integrated with smoothing parameter (\(\lambda \)) selection.
Outline

1. Splines in regression models
2. Defining constraints to the shape
3. Shape constrained additive models
4. Some examples in R
5. Extensions and discussion
Discussion

Interesting method with several potential applications

(Relatively) complex estimation and computational techniques

Comparison of linear constrained and non-linear unconstrained optimization

Shape constrained additive models fully implemented in the R package scam
Extensions

Framework already extended to **bi-dimensional risk surfaces** through a tensor product basis functions

Not easy to address the original problem that motivated the research: **shape-constrained exposure-lag-response** functions