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Introduction

Outline of the presentation:
@ Missing data: why worry?
@ Multiple Imputation: how does it work? What are main
advantages? And the main issues?

@ Multilevel Multiple Imputation: additional difficulties
compared to single level case;

@ Substantive model compatible imputation: what do we do
with non-linearities/interactions/survival data?

@ Summary and future work.
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Missing data

@ Missing data are extremely common; but why worry?
@ They cause loss of power;
@ When inappropriately handled, may even introduce bias in
inferences;
@ Why are data missing?
e Missing data Mechanisms: MCAR, MAR, MNAR
@ Three classes of valid methods:

@ Likelihood-based methods;
@ Inverse probability weighting methods;
© Multiple Imputation.
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Multiple Imputation

@ Advantages of Multiple Imputation:

e Extremely flexible, compared to other valid methods;

e We still use same substantive model we would have used
were we able to observe all intended data;

e Easy to include auxiliary variables to recover information on
missing data;

e Straightforward to perform sensitivity analysis to different
missing data assumptions.

@ Difficulties with Multiple Imputation:

@ Additional distributional assumptions: imputation model
needs to be (at least approximately) correctly specified;

@ Issues of compatibility between imputation and analysis
model.
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Multiple Imputation: challenges.

@ There are simple situations in which specification of
imputation model and compatibility do not cause particular
problems;

e Example: Missing data in a single variable, analysis model
is a simple linear regression model with no
interactions/non-linearities;

@ But what if...

@ ... we had missing data in multiple variables?

@ ... we had data with a multilevel structure?

© ... we had interactions/non-linearities in the analysis
model?
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Multiple Imputation: Joint Modelling.

1) What if we had missing data in multiple variables?

@ There are both parametric and non-parametric methods;

@ Among parametric methods, two main strategies: Joint
Modelling and Full Conditional Specification;
@ Joint Modelling Imputation:

@ it consists in defining a multivariate joint model for partially
observed variables given fully observed;

@ Gibbs sampling with data augmentation is used to fit
imputation model and generate imputed datasets;

@ Specification: difficult to define sensible joint models for
mixed data types;

@ Compatibility: it is often the case that substantive analysis
model is simply derivable from joint imputation model by
conditioning over covariates;
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Multilevel data structure.

2) What if partially observed data had a multilevel structure?

@ Standard example: pupils (level 1) clustered in schools
(level 2);

@ We need to reflect this structure in imputation model,
similarly to what we do for analysis model;

@ For my Ph.D, we decided to use a Joint Modelling

Imputation approach, defining a joint multilevel imputation
model (Schafer and Yucel, Carpenter et. al).
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Multilevel data structure

Multilevel Joint Model:

X1 szi XO XS xs

-3 Clusters: A,Band C

- 4 Level-1 variables: X1,
X2, X3 and X4

-2 Level-2 variables: X5,
X6
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Multilevel data structure

Multilevel Joint Model:
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Multilevel data structure.

2) What if partially observed data had a multilevel structure?

@ Specification: we found that latent normals are good way
to incorporate binary/categorical variables in joint model;

@ Compatibility: we found (and Resche-Rigon and White
proved algebraically) that heteroscedastic models, i.e.
cluster-specific covariance matrices, performed better than
homoscedastic ones; however, still not perfectly compatible
with random slopes;

@ | created an R package, called jomo, to perform Multilevel
Multiple Imputation.
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Multilevel data structure.

2) What if partially observed data had a multilevel structure?

@ For my Ph.D | applied these methods to individual patient
data meta-analysis; level 1 are individual observations
and level 2 study;

@ Two other methods have been developed at the same time,
based on FCS (Resche-Rigon and White, Jolani et al.);

@ These methods have been compared recently, our method
seems to be preferable with binary data;

@ Need to be careful with small datasets, priors play a major
role with few clusters or few observations per cluster.
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Substantive Model Compatible Imputation

3) What if partially observed variables were included in
interactions/non-linearities in the imputation model?

@ Up to 3/4 years ago, ad-hoc methods with several
limitations: passive imputation, JAV...

@ Bartlett et al. (FCS) and Goldstein et al. (JM) developed
the so-called substantive model compatible imputation
method.

@ For single level data, R package SMC-FCS;
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Substantive Model Compatible Imputation

3) What if partially observed variables were included in
interactions/non-linearities in the imputation model?

@ Example: Y, X continuous variables;

@ Substantive Analysis model is a linear regression with
quadratic effect:
Y ~ X+ X2

@ With missing data in both Y and X, difficult to set up
appropriate joint model for X and Y;

@ Alternative: factor model in two terms:

X ~N(B,0) Y~ N(aoX+arX? w)
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Substantive Model Compatible Imputation

3) What if partially observed variables were included in
interactions/non-linearities in the imputation model?

@ When imputing missing values in X, we cannot simply use
marginal model, still need to impute compatibly with
substantive model for Y;

@ We can’t use Gibbs sampler, we therefore rely either on
rejection sampling or Metropolis-Hastings;

@ Specification: we can easily accommodate any sort of
substantive model, linear regression, logistic regression, or
even Cox model.

@ Compatibility: no issues any more with compatibility, at the
only cost of having to know the form of the substantive
model prior to imputation;
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@ Ml very flexible method to handle missing data, quickly
became gold standard;

@ Valid under MAR assumption, with possibility to perform
sensitivity analyses to different assumptions;

@ Imputation model needs to be correctly specified and
reasonably compatible with substantive model;

@ We proposed a way to handle multilevel structures in the
imputation model;

@ We are also working on software allowing for substantive
model compatible imputation;
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Future Work

@ Extend software to allow for imputation of covariates of
survival models;

@ How should we include weights in the imputation model?

@ With longitudinal data, methods for imputing taking into
account different correlation structures.
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