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Introduction

Causal Inference

Goal:  Quantify the effect of treatment A on outcome Y

Road Map
© Specify a scientific research question

@ Formulate question that can be answered from data,
i.e., target parameter of probability distribution Py

© Define a mapping from data to target parameter
Yo = V(Fo)
@ Develop a procedure to estimate Py

© Apply mapping
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Introduction

Example: Estimating additive effect of binary point
treatment

@ Naive approach can be biased due to confounding
selection bias, informative dropout, etc.

@ Traditional parametric modeling approach is inadequate
e Parametric models are seldom correct, and break down for
high-dimensional data

e Maximum likelihood estimation typically involves a global
bias/variance tradeoff

@ Targeted maximum likelihood instead
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Introduction

Fundamental Issues: Bias and Variance

@ Parametric model misspecification can bias estimates

@ Advantages of a semi-parametric approach

e weakens modeling assumptions
o feasible with high dimensional data

@ Global bias/variance tradeoff of maximum likelihood estimation not
optimal when parameter of interest is low-dimensional.
Can we make a better tradeoff for the parameter we care about?

@ Ideal estimator

e double robust
e achieves semi-parametric efficiency bound
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Introduction

Demystifying Double Robustness
Kang and Schafer (2007)

@ comparison of DR estimators, inverse probability weighting
estimators (IPCW), OLS on simulated data

@ extreme propensity scores (near positivity violations)

@ correct and misspecified outcome regression and propensity score
models

@ demonstrated that DR estimators can perform worse than non-DR
parametric regression based estimators
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Introduction

Rejoinders to K&S

@ Robins et al, emphasize boundedness: estimates fall within
the parameter space with probability 1

@ Tsiatis and Davidian propose strategies to address positivity
violations (no IP weighting for observations with pscore close
to 0, use regression predictions)

@ other respondents addressed the dual misspecification problem
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Introduction

Advances in TMLE address many of these issues
Relative Performance of Targeted Maximum Likelihood Estimators
Porter, et. al. (2011)

@ Boundedness
substitution estimator that remains within the parameter space

@ Near Positivity Violations
C-TMLE approach to estimating the treatment
assignment/censoring mechanism

@ Model Misspecification

data-adaptive Super Learning can replace parametric model
specification
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Introduction

Simulation Study in Health Economics

joint work with Noémi Krief, Rosalba Radice, Richard Grieve, Jasjeet S. Sekhon
e Estimating ATE on Incremental Net Benefit (INB)
@ INB is a composite outcome (Cost and QALY)

@ Analogous to Kang and Schafer
e extreme propensity scores
e correct and misspecified outcome regression and propensity
score models
e comparison of estimators

Non-DR DR

regression weighted regression

IPTW* augmented IPTW
TMLE

*inverse probability of treatment weighting

Herndn et al, 2000, Robins and Rotnitzky 2001
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Introduction

Scenario 4: Unstable PS weights
rMSE, correct and misspecified models
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TMLE

Motivation for TMLE

Observations (O, ... 0,)
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Motivation for TMLE

Model: set of possible probability distributions of the data
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Motivation for TMLE
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TMLE

Example: TMLE to estimating additive effect of binary point
treatment (ATE)

0=(Y,A W)~ P

Y: outcome, A: binary treatment indicator, W: covariate vector

Likelihood factorizes:

L(O)=P(Y |AW)P(A| W)P(W)
Qy Qw

Define
QO - (Q()y7 QOW)

go = Po(A | W)

Double Robustness: TMLE consistent if either Qy or gy is estimated
consistently, and asymptotically efficient when both are correct.
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TMLE

TMLE Algorithm
@ Step 1: Obtain initial estimate

QYA W) = E(Y | A W)
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TMLE

TMLE Algorithm
@ Step 1: Obtain initial estimate

QYA W) = E(Y | A W)

@ Step 2: Target initial estimate (logit scale)
Qn(A, W) = Qu(A, W) + eHy (A, W)
o Estimate gy (propensity score)

e construct H;"(A, W), parameter-specific fluctuation covariate
e maximum likelihood to fit €
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TMLE

TMLE Algorithm
@ Step 1: Obtain initial estimate

QYA W) = E(Y | A W)

@ Step 2: Target initial estimate (logit scale)
Qn(A, W) = Qu(A, W) + eHy (A, W)
o Estimate gy (propensity score)

e construct H;"(A, W), parameter-specific fluctuation covariate
e maximum likelihood to fit €

@ Step 3: Evaluate parameter: w,TMLE = \II(C_{),’;)
Key idea: W(Q) less biased than W(Q?)
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TMLE

Influence Curve (IC)

IC is a function that describes estimator behavior under slight
perturbations of the empirical distribution

Hampel, 1974
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Influence Curve (IC)

IC is a function that describes estimator behavior under slight
perturbations of the empirical distribution
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Influence Curve (IC)

IC is a function that describes estimator behavior under slight
perturbations of the empirical distribution

0 0 »
Hmean M median
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Influence Curve

@ Influence Curve has mean 0 at the true parameter value, so

can be used as an estimating equation

Consider the mean

Icmean = x—
1 n

0 = - Z(x,- — 1)
i=1

Every estimator for a given parameter has its own influence
curve (not necessarily unique)

Among all these influence curves, one has minimal variance.
This is the Efficient Influence Curve (canonical gradient)

@ An examination of an estimator’s influence curve gives insight
into its behavior
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TMLE

ATE parameter

o' = Eo(Eo(Y [A=1, W)~ E(Y |A=0,W))

ATE __ I(A=1) - I(A=0) A = A -
ICeff - <g0(1 ‘ W) gO(O | W)) [Y Q(Av W)]+Q(1, W) Q(07 W) l/)

I(A=1) I(A=0)
go(1| W) g0 W)
Hz (A, W) is derived such that the maximum likelihood procedure

that fits € also solves score equations that span the efficient
influence curve for the target parameter.

He TE(A W) =

S. Gruber TMLE for Health Economic Evaluation 22/33



TMLE

Influence curve (IC)

@ empirical mean of IC for regular asymptotically linear (RAL)
estimator provides linear approximation of estimator

e thus, VAR(IC) provides asymptotic variance of estimator
@ |C-based inference: p-value, test statistic, confidence interval

@ Solving the efficient IC equation confers double robustness
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TMLE

Example: Estimating an Additive Treatment Effect

POTE = Bo(Bo(Y | A=1,W) — E(Y | A= 0, W))

@ Generate Data, Py: (¢ =1)

Wi, Wa, W5 ~ N(0,1)
go(A=1| W) = expit(0.2 + 0.2W; + 0.3WU%)

QO(A7 W) =A-— 3AW1 — 2W1 W3

@ lllustrate TMLE performance, (_?0 is misspecified, go correct

Qmis <- glm(Y ~ A + W1 + W2 + W3 + W1xW3)
gcor <- glm(A ~ W1 + W2, family = binomial)
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Estimate of Qn(0,W) Estimate of Qn(1,W)
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Initial estimate of counterfactual predicted outcomes based on
misspecified model for Qg when A is set to 0 (1) and A is set to 1 (r).
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=0, W)

E(Y|A

Targeted estimate of counterfactual predicted outcomes based on
misspecified model for Qg when A is set to 0 (1) and A is set to 1 (r).

Estimate of Qn(0,W)
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Estimate of Qn(0,W)

~ o
L]
L]
g - ‘ o !
) hd s
n o ° L4 .6
< s
> L
w5 o
~ o
' T T T T
5 10 15 20
subject

Targeted estimate of counterfactual predicted outcomes based on
misspecified model for Qg when A is set to 0 (1) and A is set to 1 (r).

E(YA=1,W)

Estimate of Qn(1,W)
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W(Q%) =0.72, W(Qr) = 0.93

one sample, n = 500, 1y = 1
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C-TMLE

Collaborative Targeted Minimum Loss-Based
Estimation (C-TMLE)

Key Insight: Maximal bias reduction achieved by adjusting for
residual confounding in (Qo — Q2) only

@ standard TMLE: external estimate of gy

@ C-TMLE: estimate only the required portion of gy
@ same target parameter

e goal is is reduce MSE

e recommended when there are near positivity violations
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C-TMLE

C-TMLE algorithm

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Estimate Q0 = E(Y | A, W)

Collaborative targeted construction of candidate
treatment mechanism estimates, g1,..., 8k

Create candidate TMLE estimators

Q1 (&1)--- Qr(8k)

Select the best candidate, Q; = Q}(gx), using cross

validation (loss function for Q)

Evaluate parameter: ) = W(Q})

n
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Conclusion

Summary
TMLE family of estimators

@ locally efficient
@ substitution estimator (respects known bounds on M)
@ listening to data in principled way trumps intuition

@ C-TMLE, Super Learning
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Additional Slides
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Conclusion

TMLE for Bounded Continuous OQutcomes

@ Logistic Fluctuation
e Enforces bounds on the problem

o Reduces bias and variance (w.r.t. linear fluctuation) when
there is sparsity in the data

e Robustifies estimator when applied to sparse data
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Conclusion

Logistic fluctuation ensures TMLE estimate respects bounds on
semi-parametric model

e Y € [a, b] maps to Y* €[0,1] y* — (Y=a)
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Conclusion

Logistic fluctuation ensures TMLE estimate respects bounds on
semi-parametric model

o Y € [a,b] mapsto Y* € [0,1] Y= =)

@ Causal Additive Treatment Effect for Y*

Yo =V (Po) = Eo[Eo(Y" [A=1, W) — E(Y" | A=0, W)]

@ Fluctuate on logit scale to target initial estimate
iy (A, W) = expit[logit(Qy y-) + eh(A, W)]

o logistic regression to fit €, h(A, W) = é((?\:vy) - 11(?(?0‘,)./)

(same as for linear fluctuation)
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