Developing big data methods in environmental epidemiology

Antonio Gasparrini

London School of Hygiene and Tropical Medicine
United Kingdom

Workshop Big data at LSHTM: who is doing what?
Centre for Statistical Methodology
14 March 2017 – LSHTM
Environmental epidemiology

Definition (Wikipedia): "the branches of epidemiology concerned with the discovery of the environmental exposures that contribute to or protect against injuries, illnesses, developmental conditions, disabilities, and deaths; and identification of public health and health care actions to manage the risks associated with harmful exposures"

Peculiarities:

- **Widespread exposure** to environmental factors – e.g., air pollution – often affecting the whole population

- Often **small risks** – e.g., a RR of 1.0051 (95%CI: 1.0007–1.0093) for an increase of 10µgr/m³ of PM$_{10}$ (Samet NEJM 2000)

- Need to perform epidemiological analyses on **large populations**
Traditional analyses: limitations

- Exposures assigned or reconstructed with low temporal and/or spatial resolution – e.g., over large areas using central monitors – with issues such as ecological biases and measurement error

- Health data obtained from administratively collected databases, and often aggregated over large areas: lack of individual information, no knowledge on susceptibility factors
'Big data' opportunities

New **big data technologies** are already transforming the landscape of medical and epidemiological research, and offer opportunities also in environmental epidemiology.

For example:

- New resources providing **high-resolution measurements** of environmental exposures, such as remote sensing data from satellites and emission/dispersion modelling.

- Linkage between **electronic health record** databases with detailed information on health outcomes and risk factors on large populations.

 Chance to move from aggregated to individual-level investigations.
’Traditional’ approach
From Kloog EHP 2015
'Big data' approach
From Kloog EHP 2015
Statistical/computational methods

- **Hybrid models** to integrate multiple exposure sources in high-resolution spatio-temporal maps
- **Two-stage** designs to separate the analysis across sub-areas and then pool with meta-analytical methods
- **Self-controlled case-only** designs to restrict the analysis to cases, who act as their own controls (case-crossover, case series)
- **Computational techniques** for reduction and partition of estimation algorithms, ideal for multi-core computation
In summary

- Traditional measurements of environmental exposures can be integrated with newly available sources, such as emission/dispersion models and remote sensing data from satellites, to generate exposure maps with high spatial and temporal resolution.

- The linkage of existing cohorts with multiple sources of exposure data and administratively collected electronic health records can form rich datasets including large collections of variables on individual characteristics.

- This wealth of data can be used to determine individual risk profiles with longitudinal measures on time-varying exposures, health outcomes and susceptibility factors, significantly extending the analytical capability of environmental health studies.