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» Used to investigate associations between disease and putative
risk factors

» Each case is individually matched to M controls based on
matching variables

» Matching is used to control for confounding at the design stage

v

The study is formed of matched sets

Types of matching variables
1. Matching on ‘simple’ variables:
> sex, age, smoking status
2. Matching on ‘complex’ variables:
» family, GP practice, neighbourhood



Matched case-control studies: Data and notation

Set Individualj D Xeat xeen

cat Con
1 1 1 X§3 X5
cat Ccon
1 2 0 Xi5 X{5
cat con
M-+1 0 Xyt XM
cat Con
2 1 1 X33 X5
cat con
2 2 0 X55 X505
cat con
2 M-+1 0 Xt Xowmi
cat con
3 1 1 X5 X3
cat con
3 2 0 X35 X35
cat con
3 M-+1 0 XFhi1  Xsmed

More generally we allow vector covariates: X, X<,
The matching variables are denoted S



Matched case-control studies: Analysis

Logistic regression model

T cat T con
Pr(D — -1 |XC£1[, XCOI’I7 s) _ exp{ﬁcatx + ﬁCOnX + q(s)}

1+ exp{BL X+ Bl X+ g(S)}



Matched case-control studies: Analysis

Logistic regression model

T cat T con
Pr(D = 1x X §) = PP eaX™ + Peon X™ 1+0(S))
1+ exp{Bea X + Beon X" +q(S)}

Conditional logistic regression

Set Individualj D xeat xeon

1 cat con
i 1 1 X X5

1 cat con
i 2 0 X3 X5

1 cat con

I M-+1 0 Xiwi1  XiMpd

T T
exp{ﬁcalxhat + Bconxic1(m

M+1 T T
ZJ-;{ exp{ﬁcatxiﬁat"_ﬁconxg‘on}




Matched case-control studies: Missing data

Set Individualj D Xeat xeon
1 1 1 - —

1 2 0 xE X
T M0 K 6
2 1 1 X =

2 2 0 x§§‘ x5
2 M-+1 0 XPMi1 Wi
3 1 1 x§*1“ x5
3 2 0. - X
3 M-+1 0 X$%ap1  XSWit
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association between fibre intake and colorectal cancer
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» Matched case-control study nested within EPIC-Norfolk to study
association between fibre intake and colorectal cancer

Explanatory variables

» Main exposure: fibre intake (g/day) from a 7-day diet diary

» Categorical potential confounders: smoking status (3 cats),
education (4 cats), social class (6 cats), physical activity (4 cats),
aspirin use (2 cats)

» Continuous potential confounders: height, weight, exact age,
alcohol intake, folate intake, energy intake



Motivating example

» Matched case-control study nested within EPIC-Norfolk to study
association between fibre intake and colorectal cancer

Explanatory variables

» Main exposure: fibre intake (g/day) from a 7-day diet diary

» Categorical potential confounders: smoking status (3 cats),
education (4 cats), social class (6 cats), physical activity (4 cats),
aspirin use (2 cats)

» Continuous potential confounders: height, weight, exact age,
alcohol intake, folate intake, energy intake

Each case matched to 4 controls
sex, age (within 3 months), date of diary completion (within 3 months)



Motivating example: Missing data

» 318 cases, 1272 matched controls
» 328 individuals (20%) missing one or more adjustment variables
» Complete case analysis: uses only 240 matched sets

> this is only 75% of matched sets
» and 64% of individuals



Previous methods for handling missing data in
matched case-control studies

» Lipsitz et al. (1998)

» Paik and Sacco (2000)
» Satten & Carroll (2000)
» Rathouz et al. (2002)

» Rathouz (2003)

» Paik (2004)

» Sinha et al. (2005)

» Sinha & Wang (2009)
» Gebregziabher & DeSantis (2010)
» Ahn et al. (2011)

» Liu et al. (2013)



Limitations of previous methods

» Assume only one partially observed covariate

v

Assume partially observed covariates are collectively observed
or missing on each individual

v

Require parametric modelling of the matching variables

v

Require bespoke computer code



Multiple imputation for

matched case-control
studies
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1. Missing values are ‘filled in’ by sampling values from some
appropriate distribution
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Overview of Multiple imputation (M)

1. Missing values are ‘filled in’ by sampling values from some
appropriate distribution

2. This is performed K times to produce K imputed data sets
3. The analysis model is fitted in each imputed data set

4. Parameter and variance estimates are combined using ‘Rubin’s
Rules’

We assume data are missing at random (MAR)



Advantages of using Ml

v

Many researchers familiar with the technique

v

MI software readily available and easy to use

v

Allows for multiple partially observed covariates without needing
them to be collectively observed or missing

v

Can incorporate information on auxiliary variables

v

Reduces to conditional logistic regression when there are no
missing data



Joint model MI versus Full conditional specification
(FCS) MI

Joint model Ml

» A Bayesian model is specified for the distribution of the partially
observed variables given the fully observed variables

Xcat’ XconlD7 S

» Values for missing variables are sampled from their joint
posterior predictive distribution



Joint model MI versus Full conditional specification
(FCS) MI

Joint model Ml
» A Bayesian model is specified for the distribution of the partially
observed variables given the fully observed variables
XC&][7 XCOH | D7 S
» Values for missing variables are sampled from their joint
posterior predictive distribution
FCS Ml
» A model is specified for the distribution of each partially missing
variable conditional on all other variables

Xcat.k|xcat,fk7xc0n’ D, S

» FCS algorithm cycles through the imputation models until
convergence is achieved



‘Compatibility’ in Ml
Imputation model
Xcat, XCOH|D, s

Analysis model: Conditional logistic regression

exp{ﬂcatxcat + Bconx/c10n
ZM_H exp{ﬁCdtxcat + ﬁconx/ion

Compatibility
» The imputation model and the analysis model are compatible if
there exists a joint model for all variables which implies the
imputation model and the analysis model as submodels.



‘Compatibility’ in Ml
Imputation model
Xcat, XCOH|D, s

Analysis model: Conditional logistic regression

exp{ﬂcatxcat + Bconxﬁon
ZM_H exp{ﬁcdtxcat + Bconx/ion

Compatibility
» The imputation model and the analysis model are compatible if
there exists a joint model for all variables which implies the
imputation model and the analysis model as submodels.

» If the joint model and the analysis model are compatible, and the
data are MAR, joint model MI gives consistent parameter and
variance estimates.



‘Compatibility’ in Ml
Joint model M
Xcat’ Xcon| D, S
FCS MI
)(cat,k‘xcat,fk’xcon7 D, S

Result of Liu et al 2014:
» The set of conditional models, {.#}, is compatible with a joint
model, Aigin, if:

» for each .#) and every possible set of parameter values for that
model , 3 a set of parameter values for the joint model ., such
that .# and .#;.i, imply the same distribution for the dependent
variable of .



‘Compatibility’ in Ml

Joint model Ml
Xcat Xcon|D s
FCS MI
)((:at7k|xcat,fk’xcon7 D, S

Result of Liu et al 2014:
» The set of conditional models, {.#}, is compatible with a joint
model, Aigin, if:

» for each .#) and every possible set of parameter values for that
model , 3 a set of parameter values for the joint model ., such
that .# and .#;.i, imply the same distribution for the dependent
variable of .,

» If this holds, the distribution of imputed data from FCS M
converges asymptotically to the posterior predictive distribution
of the missing data under joint model MI
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Basis for MI using matching variables

Multiply impute X< and X°°" from their conditional distribution given
D,S



MI using matching variables

Basis for MI using matching variables

Multiply impute X< and X°°" from their conditional distribution given
D,S

» We outline 3 ways of modelling the distribution of X X" |D, S

» The matching between cases and control is ‘broken’ at the
imputation stage

» But the matching is restored at the analysis stage and
conditional logistic regression is applied to each imputed data set



MI using matching variables: Method 1

Model for categorical variables

exp{.yoxcat + xcat,ycatxcat + Xcat.yss_|_ Xcat.},DD}
Zxcat’ exp{.},oxcat’ + xcat’ »ycatxcat/ 4 xcat’ YSS+ xcat’ Yo D}

Pr(X = x|S,D) =
Model for continuous variables

XX S D~ N(at+¢D+yX +8S,X)



MI using matching variables: Method 1

Model for categorical variables

Pr(Xc‘“ _ Xcat|s, D) _ exp{.yoxcat + xcat.ycatxcat + Xcaty35+ Xcat'}'DD}

Zxcat/ exp{»yoxcat’ + xcat’ »ycatxcat/ 4 xcat’ YSS+ xcat’ Yo D}

Model for continuous variables

XX S D~ N(at+ ¢ D+ X + 8S,T)

We have shown that this model is compatible with the analysis model



MI using matching variables: Method 1

exp{,yoxcat + Xcat,ycatxcat + xcat.yss+ Xcat,yDD}

Pr(X= = x|S,D) =
( .0) ¥ year €XP{ Yo X! + x'y,, x4 x<a'ys § 4 x<'yp D}

XX S D~ N(ot+ D+ yX™ +8S,X)

Bayesian modelling software can be used to impute missing X and
Xecom from the posterior predictive distribution implied by the above
joint model.
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X¢aK: multinomial logistic regression on X<~k xcn. D §



MI using matching variables: Method 1

exp{,yoxcat + Xcat,ycatxcat + xcat.yss+ Xcat,yDD}
Zxcat/ exp{:yo Xcat’ + XCat/ :ycatxcat/ + Xcat’ fySS + Xcat/ :}/D D}

Pr(X® = x*|S, D) =

XX S D~ N(ot+ D+ yX™ +8S,X)

Bayesian modelling software can be used to impute missing X and
Xecom from the posterior predictive distribution implied by the above
joint model.

FCS MI

Uses a set of fully conditional models which is compatible with the
joint model.

Xenk: |inear regression on X Xk D §

X¢aK: multinomial logistic regression on X<~k xcn. D §

These are the default options in many MI packages



MI using matching variables: Method 2

» Uses a latent normal model
» Weat: set of latent variables, one for each element of X¢<&
> Xcat,k —1if Wcat,k >0

Latent normal model Ml

X WS, D~ N(et+¢D+8S,X)



MI using matching variables: Method 2

» Uses a latent normal model
» Weat: set of latent variables, one for each element of X¢<&
> Xcat,k —1if Wcat,k >0

Latent normal model M|
X" WS D~ N(a+¢D+8S,X)

Implementation
» jomo package in R
» REALCOM-MI
» realcomlimpute: interface between Stata and REALCOM-MI



MI using matching variables: Method 3

Method 2: Latent normal model MI

X WS, D~ N(et+¢D+8S,%)

Method 3: Normal model M|
X XS, D~ N(a+¢D+8S,X)

Imputed values of X which are non-integer are handled using
‘adaptive rounding’



MI using matching variables: Method 3

Method 2: Latent normal model MI

X WS, D~ N(et+¢D+8S,%)

Method 3: Normal model Mi
X XS, D~ N(a+¢D+6S,X)
Imputed values of X which are non-integer are handled using
‘adaptive rounding’
Implementation
» norm package in R

» mi mvn in Stata



MI using matching variables

Method 1: FCS MI
Xenk: linear regression on X Xen—k p §
Xk multinomial logistic regression on X¢at.—k_xcon. p §

exp{.yoxcat L Xcat.ycatxcat 4L XCaT.ySS+ XCat;yD D}

Pr(xcat = xcat‘s’ D) = cat/ cat’ cat’ cat’ cat’
Excat’ exp{yox + X Y X + X YSS+X YDD}

XX S D~ N(at+¢D+yX? +8S,X)

Method 2: Latent normal model MI

X WS D~ N(a+¢D+8S,X)

Method 3: Normal model M|
X" X|S, D~ N(a+¢D+8S,%)



MI for matched case-control studies

1. Ml using matching variables

2. Ml using matched set



MI using matched set

Basis for Ml using matched set
Multiply impute based on a model for

set __ cat con cat con cat con
X = (X7 X700 X5 X5, X1 Xie)

The imputation does not use the matching variables S

Set Individualj D xeat Xeon

H cat con

i 1 1 X X5

1 cat con
i 2 0 X3 X3

1 cat con

I M-+1 0 Xiwit  XiMid

» We outline 3 ways of modelling the distribution of X*¢t

» The matching between cases and control is retained at both the
imputation stage and the analysis stage



MI using matching variables vs M| using matched set

Basis for MI using matching variables

Xcat, Xcon| D, S

Basis for MI using matched set
Xset — (X;:at,x‘;:on7xé:at7xé:0n’ . 7XI‘\:;Il.t|-1 7XI‘\:/(I).I|11)

Why use ‘Ml using matched set'?
» It may not be feasible/desired to specify effect of matching
variables S
» The analyst may not have information on S

» The analysis model does not model the effect of S



MI using matched set: Method 1

Model for categorical variables
M+1 M M+1
PrXF,.... Xif\ ) <expy Y. nXf+ ) Z X X5 T
j=1 j=1j=

Model for continuous variables

)(jcon|xcat’ XIT/‘;J[H’ ~ N(n +€/(j: 1)+pX1Cat+w)_(cat+u7A)



MI using matched set: Method 1

Model for categorical variables
M-+1 M M+1
PrX{,... Xiftq) <expd Y nXf+ ) Z X X5 T
j=1 j=1j=
Model for continuous variables

X XE L Xy U~ N+ 81 = 1)+ p X + w X + u,A)

We have shown that this model is compatible with the analysis model



MI using matched set: Method 1

Model for categorical variables

P Xcat Xcat M Xcat Y M Xca.t Xcat Xca.t
r( 1 sy M+1)°<exp ZY1 +Z Z Yo +7
J=1 J=17=

Model for continuous variables

X XE L Xy U~ N+ 81 = 1)+ p X + w X + u,A)

We have shown that this model is compatible with the analysis model

FCS MI
X/.“’“’k: linear regression on )(jca‘,)(j“’“”k,zj-,# X5 L XSO
cat,K . f f ot cat,—K t
X/. : multinomial logistic reg on Xj“’“,Xj ,Z/-,#sta ,Z/-,#Xlson



MI using matched set: Method 1

FCS Mi
X/.“’“*k: linear regression on )(].Cm,)(jw“’_k,xjr,# X5 X XSO
cat,k . f f ot cat,—k
Xj : multinomial logistic reg on )(]?0“7)(1. 72,-/75,-)(/3"‘%2,-/#)(]‘50"

Set Individualj D X X<
i 1 1T x@ e
i 2 e

1 cat con
i M+1 0 Xive1  Ximad




MI using matched set: Method 1

FCS MI
con.k. ; i cat ycon,—K .. ycat .. ycon
X/. : linear regression on X] ,Xj ,2#])(/., ,2#])(/.,
cat,k . f f ot cat,—k
Xj : multinomial logistic reg on )(/?0“7)(1. s XA stat,zj,# Xj.‘;on

Set Individualj D xeat xeon

1 cat con
i 1 1 X X5

1 cat con
i 2 0 X3 Xi5

1 cat con

I M-+1 0 Xiwi1  XiMpd

Set X1cat X1con Zj;ﬂ chat Zj;ﬂ Xj_con Xéal chon Zj;ﬁz chat Zj;éZ chon

i cat con . cat ) con cat con i cat )
! Xi1 Xi1 Ljx1 X Ljx1 X XE NP Yjz2 X Yjze

con
Xij




MI using matched set: Method 1

FCS Mi
conk, ¢ i cat con,—k o cat . . ycon
X/. : linear regression on X/ ,Xj ,2#] i ,2#])(/.,
cat,k . . : ot at,—
X" multinomial logistic reg on )(].C°“7)(jC ,Z/,# 5 X X5

Set Individualj D xeat xeon

1 cat con
i 1 1 X X5

1 cat con
i 2 0 X3 Xi5

1 cat con

I M-+1 0 X/ M1 XiMi1

Set Xcat Xcon Zj;ﬂ chat Zj;ﬂ X_con Xcal Xcon Zj;ﬁz chat Zj;éZ Xcon

[ cat con . cat COﬂ cat con . cat COn
! Xit Xi1 Yjx1 X Lj#1 Xj o) Xi2 Yj#2 Xj Yjz2 Xj

Implementation: e.g. using mice in R, mi impute in Stata



MI using matched set: Methods 2 and 3

Method 2: Latent normal model Ml
Xl'cona VVjCM|D1 = 1’D2 == DM+1 = Oqu N(a+¢Dj+u,Z)

Method 3: Normal model M|

X XS\ Dy =1,Dp = -+ = Dppyq = 0,u~ N(@+§ D)+ U, X)



MI using matched set: Methods 2 and 3

Method 2: Latent normal model Ml
)(jcon’ VVI-CM|D1 =1,D,=...= DM+1 :O,UNN(a+¢Dj+U,z)
Method 3: Normal model M|

X XS\ Dy =1,Dp = -+ = Dppyq = 0,u~ N(@+§ D)+ U, X)

Implementation

» Latent normal model MI: jomo in R, REALCOM-MI
» Normal model MI: pan in R
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Simulation study

Two matching variables: S, Seon
Pr(S*=1D=1)=0.6, S“"|S“ D=1~ N(0,1)
Three covariates: X, xconA  xconB
logit Pr(Xc*| S %" D) = —2.5+0.58 +0.55°" +0.75D
XConA| xeat geat geon py . N(0.5X 4-0.58% +0.55°" +-0.5D, 1)
True log ORS: Bea = 5/12, Beona = Beons = 1/3

100 or 500 matched sets

1 control or 4 controls per case

10% or 25% missing data in X, xnA  xconB MCAR or MAR.
1000 simulations, 50 imputations
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Simulation study

Two matching variables: S, Seon
Pr(8*=1D=1)=0.6, S*“"S“ D=1~ N(0,1)
Three covariates: Xcat, xcona  xconB
logit Pr(Xc*| S, 8" D) = —2.5+0.58 +0.55°" +0.75D
XeonA| xeat geat geon iy o N(0.5X +0.58% +-0.55°" +-0.5D, 1)
True log ORS: Beat =5/12, Beona = Beons = 1/3
100 or 500 matched sets
1 control or 4 controls per case

10% or 25% missing data in X2, xconA  xconB MCAR or MAR.

1000 simulations, 50 imputations

v

v

v

v



Simulation study results

Xcat XconA

LOR SE estSE LOR SE estSE
Complete data 0.426 0.213 0.206 0.336 0.078 0.082
Complete cases 0.449 0.379 0.377 0.341 0.144 0.149
MI using matching variables
Method 1: FCS 0.431 0.240 0.241 0.336 0.090 0.096
Method 2: Latent norm  0.446 0.238 0.241 0.322 0.085 0.095
Method 3: Normal 0.386 0.215 0.235 0.338 0.090 0.095

Miusingmatchedset

Method 1: FCS 0.430 0.247 0.243 0.335 0.094 0.097
Method 2: Latent norm  0.455 0.249 0.247 0.300 0.085 0.095
Method 3: Normal 0.407 0.238 0.251 0.350 0.098 0.101

LOR = mean estimated log OR
SE = empirical standard error
empSE = mean estimated standard error



Overview of simulation results

» All Ml methods appear to work well

» MI using matching variables more efficient than Ml using
matched set
» FCS MI (Method 1) nearly always gave the least biased
estimates
» MI using matching variables
» latent normal MI and normal MI more efficient
» MI using matched set

» FCS Ml slightly better than latent normal and normal MI when 4:1
matching
» no method obviously best or worst when 1:1 matching



lllustration



Motivating example

» Matched case-control study nested within EPIC-Norfolk to study
association between fibre intake and colorectal cancer

Explanatory variables

» Main exposure: fibre intake (g/day) from a 7-day diet diary

» Categorical potential confounders: smoking status (3 cats),
education (4 cats), social class (6 cats), physical activity (4 cats),
aspirin use (2 cats)

» Continuous potential confounders: height, weight, exact age,
alcohol intake, folate intake, energy intake

Each case matched to 4 controls
sex, age (within 3 months), date of diary completion (within 3 months)



Motivating example: results

Method LOR SE p-value
Complete cases —0.196 0.126 0.121
Method 1: FCS —-0.176 0.104 0.090
Method 2: Latent normal —-0.176 0.104 0.089
Method 3: Normal —0.177 0.104 0.088
Method 1: FCS —-0.175 0.104 0.092
Method 2: Latent normal —-0.174 0.104 0.094
Method 3: Normal —-0.181 0.104 0.082

Log odds ratio is for six-gram per day increase in fibre intake,
conditional on the confounders.
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Conclusions

» Ml is a simple and versatile solution to problem of missing data in
matched case-control studies.
» Proposed two overall approaches:
» MI using matched set, Ml using matching variables
» Three sub-methods:
» FCS MI, Latent Normal MI, Normal Ml
» FCS Ml uses imputation model that is compatible with analysis
model.

» The other methods use imputation models that are incompatible
with analysis model. These use joint model MI.

» All methods can be applied in standard software.
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